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ABSTRACT

We consider the problem

ut = (um)xx with x e R, t > 0

(P)

u(x,0) = u0(x) for x R

where m > I and u0 is a continuous, nonnegative function that vanishes

outside an interval (a,b) and such that (u -1)" 4 -C 4 0 in (ab). Using

a Trotter-Kato formula we show that the solution conserves the concavity in

time: for every t > 0, u(x,t) vanishes outside an interval A(t) =

( 1()IC2t))and

(ur xx m(rn+1)

rn-i

in Q(t). Consequently the interfaces x - 4i(t), 1 1,2, are concave

curves. These results also give precise information about the large time ..,*

behaviour of solutions and interfaces.
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SIGNIFICANCE AND EXPLANATION

The flow of a gas through a porous medium is governed by a degenerate

quasilinear parabolic equation. It is known that the nonnegative solutions to

this equation possess a lower bound for the second derivative of the pressure

in the spatial variables. This bound plays an important role in the

mathematical treatment and is related to the entropy of the flow. Since the

solutions exhibit interfaces across which vJ jumps positively, no upper
I:,, ×x.T

bound is possible globally for vx4- Nevertheless we-1wwe that the concavity

of v(S,t) in the region where v is positive is preserved in time. This is

in itself an interesting geometric property of the solution. It also allows

w . one to obtain precise information about the asymptotic behaviour of the flow.
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CONCAVITY OF SOLUTIONS OF THE POROUS MEDIUM EQUATION

Philippe Benilan*'1 ) and Juan Luis Vazquez**'(I),( 2 )

Introduction

We consider the Cauchy problem

(P) Ut " (U xx in Q- R x (0,-)

u(x,0) - u0 (x) for x e R

where m > I and u0  is a non-negative continuous function vanishing outside

a bounded interval (a,b) with u0 (x) > 0 for x e (a,b).

It is well known (see for instance [V2] for general references on this

problem) that there exists a unique generalized solution u(x,t) of (P) that

is non-negative bounded and continuous on Q. Moreover there exist two

continuous monotone curves x W p1(t), x = C2 (t) called the interfaces such

that C1(0) - a, C2(0) 
- b and

def {(x,t)CQ; u(x,t) > 01 - {(x,t)Qi C1 (t) < x < 2 •

Also u £ C (f).

In the description of the flow of a gas through a porous medium, u

represents the density of the gas and v - m- um-1  the pressure. We shall
rn-1

retain this denomination in the sequel. Of course v C(n) and it

satisfies on n the equation

(0.1) vt - (m-1)vvxx + 2
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We recall also the basic "convexity inequalities"
1 D'

(0.2) Vxx (m+1)t in (Q)

(0.3) (-1i1Cl + t i 0 in Dt(R[+i(m+1)t

m uM-I 1 cnaei
Now we assume that the initial pressure vo - 1 is concave in

(a,b); more precisely we assume

(0.4) VO,xx 4 -C in D'(a,b)

with some constant C ; 0. The purpose of this paper is to study the

concavity of the pressure v on Q and of the interfaces Ci on +, and

their consequences. The main result is

THEOREM 1. Under assumption (0.4), the following "concavity inequalities"

hold

C
(0.5) vxx l+(M+-)Ct on

(0.6) (-11i(l" + + C ) 4 0 in D'(Xe) for i = 1,2

In the case C = 0, the concavity (0.5) has already been proved by

Graveleau and Jamet [GJ]. For proving (i) in the general case C > 0, we

will follow their approach based on splitting (0.1) into the two equations

(0.7) vt = (m-1)vvx

2(0.8) vt M v x

We then recover (0.1) from (0.7), (0.8) via a Trotter-Kato formula.

In the case C > 0, the combination of (0.5) and (0.6) with (0.2) and

(0.3) gives strong information about the asymptotic behaviour of the pressure

and the interfaces. It was proved in [VI] that this asymptotic behaviour is

determined in first approximation by the two invariants of the motion, namely

the total mass

(0.9) M = f u0(x)dx = f u(x,t)dx

-2-
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and the center of mass

(0.10) x= f xuo(x)dx H f xuo(x)dx

In fact there is a selfsimilar (Barenblatt) solution given in terms of the

pressure by

[r(t) 2 - (x-x 0 ) 2+
(0.11) v(x,t) 2(m4)t

with

- (0.12) r(t) - c(M' 1 t) , c - c(m) > 0

such that as t + -, v-v = o(t-' ra + l)) uniformly in x c R, vx + x/(m+1)t -

o(t- 1 ) uniformly in 9, Ci(t) = x0 + (-1 )ir(t) + o(I) and j(t) =

(-1)iro(t) + o(t-1).

As a consequence of Theorem I these results can be improved as follows:

THEOREM 2. Under the assumption (0.4) with C > 0 we have as t +

r, 1o.13) Vxx(x't) 0=1 t
(i~1)t 2

.* uniformly in x for (x,t) e n and

(0.14) 0(t) = (-lir"(t) (1 + 01-))it

These rates of convergence are optimal as it can be easily checked on the

time-delayed Barenblatt solutions v(x,tT) - v(x,t+T), where v is given by

(0.11) and T > 0. From (0.13), (0.14) sharp estimates follow for v, vx,

and '.

The main problem in proving concavity results lies in the fact that

across a moving interface of a solution to problem (P) vx  has a jump

discontinuity, therefore Vxx is very singular and positive on the

interfaces. Using equations (0.7), (0.8) allows to overcome this difficulty

because the interfaces in (0.7) do not move while in (0.8) we are reduced to

study the characteristic lines of a first-order equation.

-3-



On the contrary in proving lower bounds for vxx no such difficulty

arises since we can always approximate our solution by smooth positive

solutions and apply the maximum principle to the equation satisfied by vxx

as in the proof of (0.2), cf. [AB]. Thus if v is a solution of (0.1) whose

initial datum v0  satisfies

(0.15) v0,xx ; -C in D'(R)

then
C

(0.16) Vxx ) 1+(m+1)Ct in D'(Q)

It is worth noting that we can always use the maximum principle method of

[AB] when dealing with problem (P) for 0 < m < I (the so-called fast-

diffusion case) or m = 1 (the heat equation) and the above results (0.5),

(0.16) are true if we define v - - i if m < 1, v log(u) if

m = 1. We shall leave the verification of these facts to the reader, but let

us recall that v C (Q) in both cases and v < 0 if m < 1.

The plan of the paper is as follows: in section 1 we study the Cauchy

problems associated to (0.7) and (0.8) for v0 satisfying (0.4). We prove

the statement about vxx in Theorem 1 via the Trotter-Kato formula in section

2. Finally, section 3 studies the interfaces and the asymptotic behavior.

-4-1
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1. PRELIMINARIES

In this section we study the Cauchy problems for equations vt - xvxx

and vt = v2. To make their application in Section 2 easier it is convenient

to introduce the following notations. Let N be the set of continuous non-

negative functions f : R + R satisfying for some bounded interval I(f) =

(a,b)

f(x) - 0 if x i (a,b) , f" 4 0 in D('l,b)

It is clear that if f e N, then either f =- 0 or I(f) = {xcR; f(x) > 01.

N is a closed set in the span Cc(R) of continuous real functions on R

with compact support with the usual topology. To measure the concavity of a

4. function f e N we define

C(f) - sup(C > 0 fx 4 -C in D'(I(f)))

c(f) sup{c > 0 cfxx 0 -1 in D'(R)}

with the convention C(f) 0 if f - 0. Clearly 0 4 C(f) 4 c(f) -1 4

4. and the maps f # C(f), f * c(f) are upper semi continuous functionals on N

(endowed with the topology of Cc(R)).

Let N, = {feN; c(f) > 01. The following results can be proved by

elementary calculus.

LEMMA 1.1. Let f c N1 with f i 0 and I(f) (,,b).

i) f C W2 ,-(a,b) and

C(f) = inf ess - f" C sup ess - f" c(f)-

(a,b) (a,b)

ii) f e W1'*(K) and

2.4. 2(b-a) 2 21f1f f , (f' ) €--
c(f) c(f)

iii) f' c BV(U) , f'(a+) > 0 > f'(b-) and

-5-
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f" - f"X(a,b ) + f'(a+)
6 a - f'(b-)6b in D'(R).

We solve first the Cauchy problem

(1o4a) vt - Xvxx in Q R x (0,0)

(1.4b) v(x,0) - v0 (x) for x c R ,

where X is a positive constant and v0 e N. We obtain

PROPOSITION 1.2. Let v0 c N and I(v0 ) = (a,b). There exists a unique

function v c C(Q) that solves problem (1.4) in the sense that

(a) v ) 0 in Q, v is positive precisely on the set 1 - (a,b) x (0,-)

and v C Co().

(b) vt = vvxx in Q.

(c) v(x,0) - v0 (x) for every x c R.

Moreover, if v(t) v(,,t) then for every t > 0, v(t) c N, and

(1.5) 0 4 v(t) 4 v0  in R,

S (1.6) <V1 • v(t) - i Dc(v)+t< xx +C(v0 )Xt in D'(a,b)

If c(v0 ) > 0 then for every (x,t) c Q

Xtv0(x)

(1.7) 
v0 (x) - v(x,t) ( 0

c(vO )

Proof. Let us assume first that c(v0 ) > 0. 7b avoid the degeneracy of the

equation (1.4a) at the level v = 0 we begin by considering the problems

-6-
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vt =A vvxx in n ={a < x < b, t > I1
v(x,O) = Vo(x) for a ( x ( b

v(a,t) = v(b,t) = e(XtC(v ) + 1) for t > 0

where e is positive and {vo }C is a sequence of CO, positive functions

in [a,b] such that

i) (vOc)xx 4 C(vO ) and (VO)xx 1 1/c(vo)

ii) + v0 uniformly in [a,b] as c + 0

iii) voe(x) = e and VOe'x x = -C(vO ) at x = a,b,

Since (PC) is a quasilinear parabolic problem and we have the a priori

estimate e < v(x,t) < supx{voc(x)} for the solutions, by the standard theory

(cf. [LSU]) there exists a solution v. c C(1) of problem (PC).

Consider now the function p(xt) = vcxx(x,t). It satisfies in a the

equation

Pt = VzPpxx + 2Xvexpx + Ap2

with initial condition p(x,0) - vOxx(x) and boundary conditions

C(v 0)
p(a,t) p(b,t) - -tC(Vo)+.

(Note that p - v~t/(Xv).) Since for every k P 0 the function

P(x,tjk) -- (Xt+k)
- 1

is an explicit solution of the equation satisfied by p, it follows from the

.%_7-



maximum principle that
I C(V0 )

(1.8) Xt+c(v 0) p(xt) - XtC(v0)+l

in n. Since p = v ,xx and va,t) = v,(b,t) 4 c it follows from lt-m

1.1 and (1.8) that the following estimates

Av
0t V t+c(v0 1

(b-a)2

2(Xt+c(v )

1 2v 0 13 (b-a)

lx c(v0)+Xt and ex 2(c(v 0)+2t)

hold in Q. Therefore if we pass to the limit c +0 there is a subsequence

{V I} of {vr1 that converges uniformly in [a,b] x (0,T] for every

T > 0 to a function v c C( ) and the above estimates hold for v so that

v C W ((a,b) x (T,-)) for every T > 0. Because of (1.8) in a neighborhood

of every point (x,t) c 9 the sequence v (x,t) is uniformly bounded away

from 0, hence by standard bootstrap arguments (cf. [LSU] or (A]) we conclude

that v c C (a) and vt = v Vxx is satisfied in the classical sense. It is

also clear that v c C( ) and both the initial and boundary conditions are

satisfied.

To obtain a solution v in Q we extend v by v(x,t) = 0 if

x / (a,b) and t > 0.

The uniqueness of the solution is a consequence of the maximum principle

(it follows in particular that all the sequence {vC} converges to v). In

fact if we have two solutions v,w of (1.4) corresponding to initial data

v0 ' w0 6 N, and v0 > w0 then v ) w in Q.

In case c(v0 ) = 0 we can yet use the above procedure to obtain a

solution and only the convergence at t + 0 poses a problem that can be

4%
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solved by approximating the initial data v0  above and below with data in N1

and using the above comparison results. #

REMARK. Independently of the authors M. Ughi [U] has studied the equation

ut = uuxx - u(1-u) in R x (0,T), for initial data not necessarily concave.

She obtains results about existence, uniqueness and nonuniqueness for suitable

classes of weak solutions. The results apply to equation (1.4a) with obvious

changes.

Consider now the initial-value problem

(1.9a) vt = IvxI 2  in Q

(1.9b) v(x,O) = v0 (x) for x c R

Equation (1.9a) is one of the simplest and best-known examples of Hamilton-

Jacobi equation. There is now a general theory of viscosity solutions for

equations of the type ut + H(ux) 0 where H is a continuous function. In

particular we have the following result proved by Crandall and P. L. Lions.

PROPOSITION 1.3. (cf. [CL], Theorem VT.2). Let v0 e BUC Wki the set of

bounded uniformly continuous functions in R. There exists a unique

v c C(Q), which is a viscosity solution of ut + H(ux ) = 0 in Q with

initial data v(x,0) - v0(x).

Moreover the maps T(t) : BUC(R) + BUC(R) defined for t ; 0 12

T(t)v0 - v(.,t) form a strongly continuous, order-preserving contraction

semigroup in BUC(R).

The fact that in problem (1.9) the nonlinearity H(p) p is convex

considerably simplies the construction of the solutions of (1.9), especially

if the initial data v0 c N. In this case we can use the classical method of

characteristics (cf. (Bt], (L]) as follows. Assume for simplicity that

V C cl([a,b] ), where (a,b) ie the support of vO . Through every point

(E,0) with a < < b we construct a characteristic line

-9-
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(1.10) x(l,t) g - 2v6(l)t

Along this line the derivative w =v x  of every classical solution of vt =

Iv x 2 must be constant. Therefore we get

(1.11) v(x,t) = v(9,0) + ft dvCx(T),T)dT = v0(g) - Iv0()I 2t

The concavity of v0  in (a,b) implies that these characteristics do

not cross each other. In that way a C I solution of (1.9a) can be

constructed in the region where v > 0. It is easy to see that this region

has the form

(1.12) = {(x,t) C Q : sl(t) < x < s2 (t)}

.; where x = s(t) and x = s2(t) are Lipschitz-continuous curves (the

interfaces), si(o) = a, s2(0) = b, and (-1) isi(t) is nondecreasing in

time. Along the interfaces the derivative vx  is discontinuous, i.e. a chock

propagates according to the well-known Rankine-Hugoniot conditions.

The following results about problem (1.9) will be needed in the proof of

Theorem 1.

PROPOSITION 1.4. Let v be the viscosity solution of (1.9) with v0 c

Then v e W'(Q T) for every T > 0, v(t) = T(t)v0 c 1 for every t > 0

and

(1.13a) c(v(t)) > c(v0 ) + 2t

(1.1b C(v 0 )

hC(v(t)) > +2tC( 0

Moreover if c(v ) > 0 then? .' - '- 2 t ~ v 0  -l

(1.14) v(t) - v0  4 c(v o9

C* 0

Proof. By the contracting property of T(t) we may assume that C(v ),

c(v 0 ) > 0 and v 0 c C ( [a,bj). T prove (1.13) let t > 0 and let x, and

x2 be two points s 1 (t) < s2 (t). There are well-defined starting-

"S 
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points &1 and E2 in (a,b) for the characteristic line (1.10) through

(x11 t) and (x2,t) respectively. Setting w I = vx(xlt), w2 - vx(x 2,t) we

have

Xl - x2 = &I - C2 + 2t(w 2 - wl)

But vx  is constant along the characteristics, hence w2-wI  v6(x 2) - vd(x 1) > 0

since v0  is strictly concave. Therefore if we write
Xl-X 2  EI-&2

- - - + 2t
w2 .wI  w2-w1

and let xI - x2 + 0 we obtain the relationship

1 1
(1.15) ( + 2t

valid in Q. (1.13) follows immediately. From this we get

(1.16) vt v2x 2t+c(v 0)

(1.14) is now immediate. *

-11-

. ...,...,, , .4 ,...,,,......,,......,....,.....,..... .. ,, **., ~...* *-..,~ , *,* . ,, .
• , " ,% .,, > 4 -. ' .-.,- ." - 7'' . :. .' : 97 .V " ,' *." '. - - .-'- ," " - '. '- , .' :.' ,



2. THE TROTTER-KATO FORMA

Let us now consider the problem

(2.1a) vt - (m-1)vvxx + vj in Q

(2.1b) v(.,O) - v0 c N •

To solve (3.1) we shall use a Trotter-Kato formula based on the results of the

previous section (with A - m-1). It is interesting in that respect to think

of the solution v(x,t) of problem (1.4) as a semigroup 8(t) * N, t > 0,

defined by S(t)v0 - v(t) if v(t) - v(-,t), v being the solution of (1.4)

with initial data v0 . In the same way the solution to problem (1.9) defines

another semigroup T(t) : N + N, t > 0. Both are order-preserving continuous

semigroups in N. The concavity estimates (1.6), (1.13) can be reformulated

as

(2.2a) c(S(t)v0 ) . c(v0 ) + (M-1)t

(2.2b) c(T(t)v0 ) > c(v0 ) + 2t

(2.2c) 
C(S(t)vO ) > _Mm 

)C(V)t
+(-1)C(Vo0 Yt

and

C(v )

(2.2d) C(T(t)vO ) >
1+2C(v 0 )t

Result of the type of Chernoff and Trotter-Kato formulas for pairs of

continuous semigroups are known when both semigroups are contractive in some

Banach space X, cf. [BCP]. Unfortunately in our case, while the semigroup

T is contr&ctive in L(3) or BUC(R), the semigroup S is not. In fact

the only contraction properties known for the solutions of (1.4) apply to the

function u - log(v), which satisfies the equation ut - X(exp(u))xx, cf.

[BC].
A.

-12-
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The convergence of our Trotter-Kato formula relies on the compactness due

to (2.2). we proceed as follows. For every e > 0 we define the approximate

solution vYt) to problem (2.1) by

(2.3) v (t) = t-(n-l)e vn + ne n-1
C e C e C

if (n-1)e 4 t < ne, where for n = 1,2,...

(2.4) n W(S(e)T(£) )n(v)
C

we obtain the following convergence result

PROPOSITION 2.1. As c + 0, v. converges to a function v c (Q) r) l'(QT)

for every Tr > 0 uniformly on coMact subsets of Q - R x [0,..), v satisfies

(2.5 vt (v2 )x - (m-2)v2(25 t 2 Xi

p. in DIMQ. Moreover if v(t) : x + v(x,t) then for every t > 0, v(t) e

and
C(v 

0

(2.6b) c(v(t)) > C(vo) + (m+1)t

Also

X c(v 0 )+(m+1)t,

(2.8) (m(1 0RD v ( 1 0-I
C(v 0)+(m+1)t t C(v 0)+(M+1)t

Proof. By induction we have vn N1,

(2.9a) 0 4 vn 4 T(ne)vo 4 Iv IC 0 0

(2.9b) C(v n ) ~ 0

C) 1+(m+1)ncC(v 0)

S(2.9c) c(v n ) 0c(v v) + (n*1)ne

(2.9d) supp(v n C supp(T(nc)v0 )

-13-
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Observe that (2.9a) follows fromt the fact that S(£)v 4 v and T(C) and

S(e) are order-preserving maps. (2.9b) and (2.9c) follow from (2.2) and

finally (2.9d) is a consequence of (2.9a).

Assume nov that c(vo) > 0 and fix to > 0. We have

supp(v (t)) C supp(T(t 0 +)v 0) if 0 < t < to

V 2 21v I./c(v
Cx 0- 0

Moreover

d v C S(C)w C-w T(C)vC_ C

dt C C

where v Ct W vnC if (n-1)c 4 t < nc and w. T(c)v,. Since

c(wE(t)) ), c(vC Mt) + 2e ~ c(v0 ) we have by (1.7) and (1.14)

- C(vo) 0 ~v~

It follows in particular that v. is relatively compact in CCXX [O1,t01).

If v. converges uniformly to a function v c CCX x [0,t01) along a sequence

C = ek + 0, we have v r W l~ft(a X [O,t 0 3)

0O4v 4T(t)vo , v2 C 0

and

(m-1)Iv IW 21v 01

c(V 0  t c(v

Furthermore the estimates (2.6a) and (2.6b) follow from (2.9b) and (2.9c) and

the upper-semi-continuity of the functionals c and C.

'To end the proof of the proposition we have yet to check that equation

(2.5) holds. For that we vrite

-14-
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d+

. - j0CS('r)w (t)) d'r + -1fC(T(T)v Wt) dTdt C 0r ll C0 C

(2.10) - ~.f6(S(T)WC (t))) d'r + 2. fe{CT(T); (t)) ,1 2 d-r
2e 0 e xx C -0e

-12 ref(S(T)W Ct)) 1 dT = I +. I + I
CO0 C x -1 2 3

We want to pass to the limit C + 0. let us begin for instance with 12'

Since vC ek v uniformly in R x [0,t0], using also (1.14) it follows that

SUP ITl(T); (t) -v(t)I, = 0 as e k 0

If we now observe that c(T(T11 e t)) )o c(v0 ) and supp(T(T)VIl (t)) C

supp T(((t 0+e)v0 ) C [-R,R] for some R > 0 the convergence

(2.11) I(T(T)*; Il(t))X 12 +Iv(t) x12  in CCEO,t0 ];L
1(E))

will hold uniformly in Tr C (0,C) as a consequence of the following compact-

N.ness result applied to the family (f Ce x) -T(T)_v (t)), 0 4 t 4 (

C > 0, 0 4 T 4 C.

LEMMA 3.2. For every constant co, R > 0 the set

"'c01R - {f e N :c~f) ), co, supp(f) C (-R,RI)

is a compact subset of W1'P(R) for any p e [1,-). Moreover there exist

constants C - C~c01R) > 0 and 8 c (0,1) such that

(2.12) Of 1 -f 2 1 4Cif 1-f 2 1

W 'ICR)

For any two functions f 1 f 2 e Nc#R*

For a proof of this result see [L, Lemma 10.1]. It is based on proving

that Nc ' C W5 'p(R) for some a > 1 and p > 1 and then using

interpolation.

* Continuing with the proof of Proposition 3.1 it follows from (2.11) that

1 =2. f(C((T(T)v Wt) )2, IV~t)x1 2  in C(0,t0] L1CR))
2 CO 0 x

In the same way we prove that

ill 115, 15 1,11,-1 5-1



I J f C{(s(T)w Wt),)12 d + (v(t) ) 2  in C([O,t I i (1N)

Finally since

F(t) =1fe(S(T) M) t) 2 dT + v(t)2  in C(N x E0,t 0 ])

it follows that 13 =FC(t)x + (v(t) 2 X in D'(R x (O,t0)). Therefore we

may let Ck+ 0 in (2.10) to obtain (2.5).

The case c(v0 ) = 0 is easily dealt with by comparison since for every

i) S(8v 0 ICV 0 4 T(6)v 0  and UT(S)vo - S(6)v0U, + 0 as 8 + 0,

ii) c(S(6)v0 ) > 0, c(T(f)v0 ) > 0.

To conclude the proof of the first part of Theorem 1 we have to identify

the function v as the pressure of the solution to problem (0.1).

I,1"
PROPOSITION 2.3. let v r C(Q) r) W'(Q T) for every T > 0 satisfy

i) for every t > 0, v(.,t) c N

ii) vt = M-1(v 2 , + (2-,m)tv x12  in D'(Q)

iii) v(*,0) = m u0 ,I

where u 0  is nonnegative, continuous and bounded. Then v is the pressure

associated to the solution of (0.1).

M1
Proof. Let u -((m-1)v/m) rniand let u be the usual solution of (0.1).

* By the preceding results if n is the subregion of Q where v is positive

a has the form {(x,t) c Q :s I(t) X < a s2(t)} and we have u c C(E). Also

S (by standard regularity theory) u C C!D(Q) and ut - (u'm)xx is satisfies in

n in the classical sense. Since u 4"u on the parabolic boundary of nl by

the maximum principle we get u C u in nl.

Moreover since (uin)x -uvX and v(*,t) e N it is easy to see that

(um), + 0 as (x,t) tends to the lateral boundary of nl, hence for every

-16-
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t> 0

d m Xe2(t)
f j '(x,t) d - (u) xu X= (t) -0

and we have

f u(x,t)dx- f u o(x)dx f u(x,t)dx

Therefore u - u in Q. #

'1

o'

-17-
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3. INTERFACES AND ASYMPTOTIC BEHAVIOUR

In this section we complete the proof of Theorem I by studying the

concavity of the interfaces of the solutions to problem (P) and derive its

consequences for the asymptotic behaviour of solutions and interfaces, Theorem

2.

Proof of the concavity of statement (0.6) of Theorem 1.

We may assume that v is a solution of (0.4) whose initial datum v0

satisfies (0.4) with C > 0. Also we may consider only the right-hand

interface and drop the subindex, (t) = 42(t). Following the idea of the

proof of the converse inequality (0.3) ([CF], [V1]) we compare our solution

v with the Barenblatt solution w that has best contact with it, this time

from above, at a given point of the interface, the main difference lying in

the fact that we have to use a time-delayed Barenblatt. The outline of the

proof is as follows: let t, > 0. Since v(°,tl) is strictly concave in its

support, cf. (0.5), vx((tI) - 0, t1) is necessarily negative, therefore by

the interface equation

(3.1) V'(t) = -Vx(g(t) - 0, t)

([A], (K]) we have i' (t). We consider the Barenblatt solution

(3.2 (r(t+T) 2 - (x-x )+
(3.2) w(x,t) = 2(m+1) (t+T)

where r(t) is as in (0.12). The parameters M, T > 0 and x, c R shall be

adjusted so as to have

(i)M v(C(tl),t 1 ) = w(0(tl),t 1 )

~(ii) Vx(;(tl)-O,t1) 
= Wx(V(tl)-O't I)

(iii) vx(&,tl) 4 wxx(g,t 1 ) whenever v(E,t1 ) > 0.

By (0.5) and (3.2) the last inequality is implied by

- C I
1+(m+1)Ct (m+l)(t +T)

1 1
S-18-
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namely T > 1/((m+1)C). The best choice is

T - 1/((m+l)C)

We can now choose M and x, so that (i) and (ii) are satisfied. It follows

from (i) - (iii) that v(,t 1 ) 4 w(.,ti). Since both v and w are

solutions of (0.7) in S - R x (tl,) it follows that v(x,t) 4 w(x,t) in

S. Therefore for every t > tI we have

(t) Cw(t) E x, + r(t+T)

Since at t = tI we have elt 1 ) - Cw(tl) and C'(t 1) - ¢,(t 1) (by Ii),

(ii)) and

(3.3) C(t) = m+1)(t+) 't)

we conclude as in [CF], [V13 that

(3.4) - m
1  (m+1)(tl+.r)

in the sense of measures in (0,-), i.e. (0.6). IN

(0.3) and (0.6) together imply that C" is a locally bounded function.

(0.6) can be reformulated as saying that ;'(t)/r'l(t+T) is nonincreasing as a

function of t.

We now study the asymptotic behaviour. We state in detail the results

for the interface.

PROPOSITION 3.1. Let v be a solution of (0.4) such that v0  satisfies

(0.4) with c > 0 and let T - 1/((m+l)C). Then as t + - we have

(3.5) r(t) + x0 4 C(t) 4 r(t+T) + x0

(3.6) r'(t) C l'(t) ) r'l(t+T)

Moreover C(t) - r(t+T) + x0 and 4'(t)/r'(t+T) + 1.

Proof. Since C'(t)/r'l(t+T) is nonincreasing and r(t)/r(t) + 1, cf. (V1],

it follows that ;'(t)/r'(t+r) + 1. Therefore C(t) - r(t+T) is

nondecreasing. Since r(t+r) - r(t) * 0 and (t) - r(t) + x0 as t +

([Vll) we have C(t) - r(t+T) + x0 . This proves the right-hand

-19-
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inequalities. The left-hand inequalities were proved in [V1].

COROLLARY 3.2. As t + i

m

(3.7) k(t - (r(t) + x0)I ( C ITt

M-(-+ 1)
m+1

(3.8) (4'(t) - r'(t)j ( C2 Tt

+ 2)

(3.9) Ic"(t) - r"(t)I ( C 3 Tt

where C1 , C2 , C3 depend only on m.

Proof. (3.7) and (3.8) follow resp. from (3.5) and (3.6). Then the estimate

for C" follows from this, (0.3) and (0.6).

To end the proof of Theorem 2 we remark that (0.13) comes from (0.2) and

(0.5). By integration we obtain estimates for v and vx . It is to be

remarked that the estimates for v, vx, r and ' are valid also in the case

of symmetric solutions without the assumption of concavity, cf. [VI, Theorem

B]. In that case the result extends to several space dimensions. Let us

finally remark another consequence the above results.

COROLLARY 3.3. The interface of a concave solution to problem (P) has zero

waiting time. More precisely with the above notations we have

(3.10) IM0 > rAlT) - (C/(m+Illl?'T')ll/lM+1)'

(3.11) '(0) >m C(b-a) /2 .

-20-
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ABSTRACT (continued)

outside an interval (a,b) and such that (u -1)" <-C < 0 in (a,b). Using

a Trotter-Kato formula we show that the solution conserves the concavity in
time: for every t > 0, u(x,t) vanishes outside an interval (t) =

1(t), 2 Wt) )and

rn -1)i C-l+C(un xx -- 1 + C m (m+l) t

M-i

in Q(t). Consequently the interfaces x = (t), i 1,2, are concave curves.

These results also give precise information about the large time behaviour of
solutions and interfaces.
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